If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7*3^2x=567
We move all terms to the left:
7*3^2x-(567)=0
Wy multiply elements
21x^2-567=0
a = 21; b = 0; c = -567;
Δ = b2-4ac
Δ = 02-4·21·(-567)
Δ = 47628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47628}=\sqrt{15876*3}=\sqrt{15876}*\sqrt{3}=126\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126\sqrt{3}}{2*21}=\frac{0-126\sqrt{3}}{42} =-\frac{126\sqrt{3}}{42} =-3\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126\sqrt{3}}{2*21}=\frac{0+126\sqrt{3}}{42} =\frac{126\sqrt{3}}{42} =3\sqrt{3} $
| 10+-5x=21-5x | | Y=0.625x^2+5x | | 4x-19+2x+13=360 | | -4y+12=4(3-y) | | 3x−12=x+14 | | 26=v+8 | | 26+v=8 | | 28=v+8 | | .75y=45 | | –5j=–4j+9 | | m=m^2-4m-14 | | (10^2x-3)+4=21 | | v+5/3=2 | | –4r=–5r+5 | | 2(2c+34)=98 | | 7x2=x+8 | | –h=10+9h | | 30-3x=180 | | 10^2x-3+4=21 | | b2/9=1 | | -2(2c-4)=8(-2c+1)+12c | | 5n2+23=120-17 | | -29=2x+x+7 | | y2/6=24 | | w2=121 | | z2+6=106 | | 1=-2x+5x+1 | | 4k+4=-2k8 | | -7=v/3 | | 4x+7=‐9 | | 2.35=0.5+x | | 4x=‐16 |